SAMPLE QUESTION PAPER (with Marking Scheme) Mathematics
(Standard)
As per Latest CBSE Sample Paper for 2021-22 with Marking Scheme released on 14.01.2022 (CBSE Circular No. Acad-07/2022)

2 Papers

Units/No. of Questions	2 Marks	3 Marks	4 Marks	4 Marks (Case-Study)	Total Marks
I. Algebra (Chapter - 4 \& 5)	$03+02$ OR			01	10
II. Geometry (Chapter - 10 \& 11)	01	01	$01+01$ OR		09
III. Trigonometry (Chapter -9)		$01+01$ OR		01	07
IV. Mensuration (Chapter-13)	01		01		06
V. Statistics \& Probability (Chapter - 14)	01	02	04	08	
Total	06	04	02	02	40

(

QUESTION PAPER
 QUESTION PAPER (with Marking Scheme) Mathematics Mathematics

 As per Latest CBSE Sample Paper for 2021-22 with Marking Schemereleased on 14.01.2022 (CBSE Circular No. Acad-07/2022)
2 Papers As per Latest CBSE Sample Paper for 2021-22 with Marking Scheme
released on 14.01.2022 (CBSE Circular No. Acad-07/2022)
2 Papers As per Latest CBSE Sample Paper for 2021-22 with Marking Scheme
released on 14.01.2022 (CBSE Circular No. Acad-07/2022)
2 Papers

Units/No. of Questions
I. Algebra
(Chapter - 4 \& 5)
II. Geometry
(Chapter - 10 \& 11)
III. Trigonometry
(Chapter - 9)
IV. Mensuration
(Chapter-13)
V. Statistics \& Probability (Chapter - 14)

2 Marks	3 Marks	4 Marks	4 Marks (Case-Study)	Total Marks
$03+02$ OR			01	10
01	01	$01+01$ OR		09
$001+01$ OR		01	07	
01	02	01		06
01	04	02	02	40
06				08

CONTENTS

1. CBSE Sample Question Paper (Solved)
2. Reliable Sample Question Paper - 02

Answer Reliable Sample Question Paper-02

These two papers are FREE with 尺eliable Question Bank, Term-II.

These papers can be downloaded from www.reliablebooks.in or from Reliable Class-X Learning APP.

CBSE SAMPLE

QUESTICN PAPER

MATHEMATICS (Standard) (TERM-II)

Time allowed : 2 Hours
CLASS-X
Maximum Marks : 40

General Instructions :

1. The question paper consists of 14 questions divided into 3 sections A, B, C.
2. All questions are compulsory.
3. Section - A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
4. Section - B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
5. Section - C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

1. Find the value of $a_{25}-a_{15}$ for the AP: $6,9,12,15$,

Sol. $a=6, d=3 ; \quad a_{25}=6+24(3)=78$
$a_{15}=6+14(3)=48 ; \quad a_{25}-a_{15}=78-48=30$
OR
If 7 times the seventh term of the $A P$ is equal to 5 times the fifth term, then find the value of its 12 th term.
Sol. $7(a+6 d)=5(a+4 d)$
$\Rightarrow 2 a+22 d=0 \Rightarrow a+11 d=0 \quad \Rightarrow \quad t_{12}=0$
2. Find the value of m so that the quadratic equation $m x(5 x-6)=0$ has two equal roots. (2)

Sol. $\quad 5 m x^{2}-6 m x+9=0$

$$
b^{2}-4 a c=0 \Rightarrow(-6 m)^{2}-4(5 m)(9)=0
$$

$$
\begin{align*}
\Rightarrow & & 36 m(m-5) & =0 \\
\Rightarrow & & m & =0,5 \text {; rejecting } m=0, \text { we get } m=5 \tag{1}
\end{align*}
$$

3. From a point P, two tangents $P A$ and $P B$ are drawn to a circle $C(0, r)$. If $O P=2 r$, then find $\angle A P B$. What type of triangle is APB ?

Sol. let $\angle \mathrm{APB}=\theta$

$$
\begin{array}{rll}
\operatorname{Sin} \theta & =\frac{\mathrm{OA}}{\mathrm{OP}}=\frac{1}{2} \Rightarrow \theta=30^{\circ} & 1 / 2 \\
\Rightarrow \quad \angle \mathrm{APB} & =2 \theta=60^{\circ} & 1 / 2 \\
\text { Also } \angle \mathrm{PAB} & =\angle \mathrm{PBA}=60^{\circ}(\because \mathrm{PA}=\mathrm{PB}) & 1 / 2 \\
\Rightarrow \triangle \mathrm{APB} \text { is equilateral } & 1 / 2
\end{array}
$$

4. The curved surface area of a right circular cone is $12320 \mathrm{~cm}^{2}$. If the radius of its base is 56 cm , then find its height.
Sol. \quad CSA (cone) $=\pi r l=12320$

$$
\begin{aligned}
\frac{22}{7} \times 56 \times l & =12320 \Rightarrow l=70 \mathrm{~cm} \\
h & =\sqrt{70^{2}-56^{2}}=42 \mathrm{~cm}
\end{aligned}
$$

5. Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45 . While printing the data, a blank was left. Find the missing frequency in the table given below :

Marks Obtained	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of Students	5	10	-	6	3

Sol. Modal class is $40-60, l=40, h=20, f_{1}=?, f_{0}=10, f_{2}=6$

$$
\begin{array}{rlrl}
& & 45 & =40+20 \times\left[\frac{f_{1}-10}{2 f_{1}-10-6}\right] \\
\Rightarrow & \frac{1}{4} & =\frac{f_{1}-10}{2 f_{1}-16} \\
\Rightarrow & 2 f_{1}-16 & =4 f_{1}-40 \Rightarrow f_{1}=12 \tag{1}
\end{array}
$$

6. If Ritu were younger by 5 years than what she really is, then the square of her age would have been 11 more than five times her present age. What is her present age?
Sol. Let the present age of Ritu be x years

$$
\begin{align*}
(x-5)^{2} & =5 x+11 \tag{1}\\
x^{2}-15 x+14 & =01 / 2 \\
(x-14)(x-1) & =0 \Rightarrow x=1 \quad \text { or } 15
\end{align*}
$$

$x=14$ years (rejecting $x=1$ as in that case Ritu's age 5 years ago will be -ve)
OR
Solve for $x: 9 x^{2}-6 p x+\left(p^{2}-q^{2}\right)=0$
Sol. $9 x^{2}-6 p x+\left(p^{2}-q^{2}\right)=0$
$a=9, b=-6 p, c=p^{2}-q^{2}$
$\mathrm{D}=b^{2}-4 a c=(-6 p)^{2}-4(9)\left(p^{2}-q^{2}\right)=36 q^{2}$
$x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{6 p \pm 6 q}{18}=\frac{p+q}{3}$ or $\frac{p-q}{3}$

SECTION - B

7. Following is the distribution of the long jump competition in which 250 students participated. Find the median distance jumped by the students. Interpret the median (3)

Distance (in m)	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$
Number of Students	40	80	62	38	30

Sol.

Distance (in m)	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$
Number of Students	40	80	62	38	30
$c f$	40	120	182	220	250

$$
\frac{n}{2}=\frac{250}{2}=125 \Rightarrow \text { median class is } 2-3, l=2, h=1, c f=120, f=62
$$

$$
\text { median }=l+\frac{\frac{n}{2}-c f}{f} \times i
$$

$=2+\frac{5}{62}$

$$
=\frac{129}{62}+2 \frac{5}{62} \mathrm{~m} \quad \text { or } \quad 2.08 \mathrm{~m}
$$

50% of students jumped below $2 \frac{5}{62} \mathrm{~m}$ and 50% above it.
8. Construct a pair of tangents to a circle of radius 4 cm , which are inclined to each other at an angle of 60°.
Sol. Draw a circle of radius 4 cm
Draw OA and construct $\angle \mathrm{AOB}=120^{\circ}$
Draw $\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$
PA and PB are required tangents
9. The distribution given below shows the runs scored by batsmen in one-day cricket matches. Find the mean number of runs.

Runs scored	$0-40$	$40-80$	$80-120$	$120-160$	$160-200$
Number of batsmen	12	20	$\mathbf{3 5}$	$\mathbf{3 0}$	23

Sol.

Runs scored	$0-40$	$40-80$	$80-120$	$120-160$	$160-200$	Total
Number of batsmen $\left(f_{i}\right)$	12	20	35	30	23	120
x_{i}	20	60	100	140	180	
$f_{i} x_{i}$	240	1200	3500	4200	4140	13280

Mean $(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{13280}{120}=110.67$ runs
10. Two vertical poles of different heights are standing 20 m away from each other on the level ground. The angle of elevation of the top of the first pole from the foot of the second pole is 60° and angle of elevation of the top of the second pole from the foot of the first pole is 30°. Find the difference between the heights of two poles. (Take $\sqrt{3}=1.73$)
Sol.

In $\triangle \mathrm{PQS}, \tan 60^{\circ}=\frac{y}{20} \Rightarrow y=20 \sqrt{3} \mathrm{~m}$
In $\triangle R S Q, \tan 30^{\circ}=\frac{x}{20} \Rightarrow x=\frac{20}{\sqrt{3}} \mathrm{~m}$
$y-x=20 \sqrt{3}-\frac{20}{\sqrt{3}}=\frac{40}{\sqrt{3}}=\frac{40 \sqrt{3}}{3}=23.06 \mathrm{~m}$

OR

A boy 1.7 m tall is standing on a horizontal ground, 50 m away from a building. The angle of elevation of the top of the building from his eye is 60°. Calculate the height of the building. (Take $\sqrt{3}=1.73$)
Sol.

Let $P R$ be the building and $A B$ be the boy
In $\triangle \mathrm{PQR}, \tan 60^{\circ}=\frac{\mathrm{PQ}}{50} \Rightarrow \mathrm{PQ}=50 \sqrt{3} \mathrm{~m}$
Height of the building $=\mathrm{PR}=(50 \sqrt{3}+1.7) \mathrm{m}=88.2 \mathrm{~m}$

SECTION - C

11. The internal and external radii of a spherical shell are 3 cm and 5 cm respectively. It is melted and recast into a solid cylinder of diameter 14 cm , find the height of the cylinder.
Also find the total surface area of the cylinder. (Take $\pi=\frac{22}{7}$)
Sol. Volume of shell = Volume of cylinder

$$
\begin{aligned}
\Rightarrow & \frac{4 \pi}{3}\left[5^{3}-3^{3}\right] & =\pi(7)^{2} h \\
\Rightarrow & h & =\frac{8}{3}=2 \frac{2}{3} \mathrm{~cm}
\end{aligned}
$$

TSA of cylinder is

$$
2 \pi r(r+h)=2 \times \frac{22}{7} \times 7 \times\left(7+\frac{8}{3}\right)=44 \times \frac{29}{3}=\frac{1276}{3} \mathrm{~cm}^{2} \quad \text { or } \quad 425.33 \mathrm{~cm}^{2}
$$

12. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact to the centre.
Sol.

$$
\begin{align*}
\Rightarrow & 90^{\circ}+90^{\circ}+\angle \mathrm{APB}+\angle \mathrm{AOB} & =360^{\circ}(\because \text { Tangent } \perp \text { radius }) \\
\Rightarrow & \angle \mathrm{APB}+\angle \mathrm{AOB} & =180^{\circ}
\end{align*}
$$

OR
Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.

Sol. Let $\angle \mathrm{PTQ}=\theta$
TPQ is an isosceles triangle.

$$
\begin{aligned}
\angle \mathrm{TPQ} & =\angle \mathrm{TQP}=\frac{1}{2}\left(180^{\circ}-\theta\right)=90^{\circ}-\frac{\theta}{2} \\
\angle \mathrm{OPT} & =90^{\circ} \\
\angle \mathrm{OPQ} & =\angle \mathrm{OPT}-\angle \mathrm{TPQ}=90^{\circ}-\left(90^{\circ}-\frac{\theta}{2}\right)=\frac{\theta}{2} \\
\angle \mathrm{OPQ} & =\frac{1}{2} \angle \mathrm{PTQ} \\
2 \angle \mathrm{OPQ} & =\angle \mathrm{PTQ}
\end{aligned}
$$

13. Case Study-1 : Trigonometry in the form of triangulation forms the basis of navigation, whether it is by land, sea or air. GPS a radio navigation system helps to locate our position on earth with the help of satellites. A guard, stationed at the top of a 240 m tower, observed an unidentified boat coming towards it. A clinometer or inclinometer is an instrument used for measuring angles or slopes(tilt). The guard used the clinometer to measure the angle of depression of the boat coming towards the lighthouse and found it to be 30°.

(Lighthouse of Mumbai Harbour.
Picture credits : Times of India Travel)
(i) Make a labelled figure on the basis of the given information and calculate the distance of the boat from the foot of the observation tower.
Sol.

In $\triangle \mathrm{PTR}, \tan 30^{\circ}=\frac{240}{x} \Rightarrow x=240 \sqrt{3} \mathrm{~m}$
(ii) After 10 minutes, the guard observed that the boat was approaching the tower and its distance from tower is reduced by $240(\sqrt{3}-1) \mathrm{m}$. He immediately raised the alarm. What was the new angle of depression of the boat from the top of the observation tower ?
Sol. Distance of boat from tower $=240 \sqrt{3}-240(\sqrt{3}-1)=240 \mathrm{~m}$
Let the angle of depression $=\theta$
$\tan \theta=\frac{240}{240}=1 \Rightarrow \theta=45^{\circ}$
14. Case Study-2 : Push-ups are a fast and effective exercise for building strength. These are helpful in almost all sports including athletics. While the push-up primarily targets the muscles of the chest, arms, and shoulders, support required from other muscles helps in toning up the whole body.

Nitesh wants to participate in the push-up challenge. He can currently make 3000 push-ups in one hour. But he wants to achieve a target of 3900 push-ups in 1 hour for which he practices regularly. With each day of practice, he is able to make 5 more push-ups in one hour as compared to the previous day. If on first day of practice he makes 3000 push-ups and continues to practice regularly till his target is achieved. Keeping the above situation in mind answer the following questions :
(i) Form an A.P representing the number of push-ups per day and hence find the minimum number of days he needs to practice before the day his goal is accomplished?
Sol. 3000, 3005, 3010, ..., 3900

$$
a_{n}=a+(n-1) d
$$

$$
\begin{equation*}
3900=3000+(n-1) 5 \tag{1}
\end{equation*}
$$

$\Rightarrow \quad 900=5 n-5 \quad \Rightarrow \quad 5 n=905 \quad \Rightarrow \quad n=181$
Minimum number of days of practice $=n-1=180$ days
(ii) Find the total number of push-ups performed by Nitesh up to the day his goal is achieved.

Sol.

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}(a+1) \\
& =\frac{181}{2} \times(3000+3900)=624450 \text { pushups }
\end{aligned}
$$

Reliable SAMPLE

General Instructions :

1. The question paper consists of 14 questions divided into 3 sections A, B, C.
2. All questions are compulsory.
3. Section - A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
4. Section - B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
5. Section-C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

1. Find the roots of the quadratic equation $3 x^{2}-14 x+8=0$.

> Or

Find the roots of the equation $6 x^{2}-\sqrt{2} x-2=0$.
2. Find the 12 th term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, \ldots .$.
3. Prove that the tangents drawn at the ends-points of a diamter of a circle are parallel.
4. The total surface area of a right circular cone is $90 \pi \mathrm{~cm}^{2}$. If the radius of base of the cone is 5 cm , find the height of the cone.
5. Find the mean of the following frequency distribution :

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	8	12	10	11	9

6. Determine the 2 nd term of an A.P. whose 6 th term is 12 and 8 th term is 22 .

Or
8th term of an A.P. is 37 and its 12 th term is 57 . Find the A.P.

SECTION - B

7. The mean of the following frequency distribution is 50 . Find the value of p.

Class interval	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	17	28	32	p	19

8. Find the mode of the following frequency distribution :

Class interval	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	2	3	5	7	4	2	2

9. Construct a pair of tangents to a circle of radius 4 cm inclined at an angle of 45°.
10. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Or
A tower stands vertically on the ground. From a point on the ground which is 60 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.

SECTION - C

11. A circus tent is in the form of a right circular cylinder and right circular cone above it. The diameter and height of the cylindrical part of the tent are 126 m and 5 m respectively. The total height of the tent is 21 m . Find the total cost of tent, if the canvas used costs ₹ $12 \mathrm{per} \mathrm{m}^{2}$.
12. Two tangents $T P$ and $T Q$ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

Or
Prove that the tangents to a circle from an external point are equal.
13.

Case Study-1

A passenger, while boarding a plane, slipped from the stairs and got hurt. The pilot took the passenger to the emergency clinic at the airport for treatment. Due to this, the plane got delayed by half an hour. To reach the destination 1500 km away in time, so that the passengers could catch the connecting flight, the speed of the plane was increased by $250 \mathrm{~km} / \mathrm{h}$ than its usual speed.

(a) Taking $\boldsymbol{x} \mathbf{k m} / \mathrm{h}$ as the usual speed of the plane, obtain a quadratic equation for this information.
(b) Find the modified speed of the plane.
14.

Case Study-2
In a village, a complaint was made for an electric fault in the area. An electrician Sunita reached their to repair the fault, which was on a pole AB of height 5 m . She needs to reach a point on the pole 1.3 m below the top of the pole to undertake the repair work. She used a ladder CD inclined at an angle of θ from the horizon to reach the required point C such that $\cos \theta=0.5$.

(a) Make a labelled figure on the basis of the given information and find the length of the required ladder.
(b) What should be the distance between the foot of the pole and the foot of the ladder ?
1.

$$
\begin{array}{rlr}
3 x^{2}-14 x+8 & =0 & \\
3 x^{2}-12 x-2 x+8 & =0 & \\
3 x(x-4)-2(x-4) & =0 & \\
(3 x-2)(x-4) & =0 & 1 / 2 \\
x & =\frac{2}{3}, x=4 & 1 / 2 \\
& \text { Or } \\
\mathrm{D} & =b^{2}-4 a c \\
& =(-\sqrt{2})^{2}-4 \times 6 \times(-2) \\
& =2+48=50 \\
x & =\frac{\sqrt{2}+5 \sqrt{2}}{12}, \quad \frac{\sqrt{2}-5 \sqrt{2}}{12} & \\
& =\frac{6 \sqrt{2}}{12}=\frac{\sqrt{2}}{2}, \quad \frac{-4 \sqrt{2}}{12}=-\frac{\sqrt{2}}{3} & \mathbf{1}
\end{array}
$$

2.

$$
a=\sqrt{2}
$$

$$
d=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2}
$$

$$
a_{12}=a+11 d=(\sqrt{2}+11) 2 \sqrt{2}
$$

$$
=\sqrt{2}+22 \sqrt{2}
$$

$$
=23 \sqrt{2}
$$

$\therefore \quad 12$ th term $=23 \sqrt{2}$
3.

$\angle 1+\angle 2=180^{\circ}$ [A radius is \perp to the tangent at point of contact] $\mathbf{1}$

$$
l \| m
$$

4.

$$
90 \pi=\pi r l+\pi r^{2}=\pi \times 5(l+5) \quad 11 / 2
$$

$\Rightarrow \quad l+5=18 \Rightarrow l=13 \mathrm{~cm}$
$l^{2}=r^{2}+h^{2} \Rightarrow 169=5^{2}+h^{2}$
5.
\Rightarrow

Class interval	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{f}_{\boldsymbol{i}}$
$0-10$	5	8	40
$10-20$	15	12	180
$20-30$	25	10	250
$30-40$	35	11	385
$40-50$	45	9	405
Total		50	1260

$$
\text { Mean } \bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{1260}{50}=25.2
$$

6.

$$
\begin{aligned}
a+5 d & =12 \\
a+7 d & =22 \Rightarrow a=-13 \mathrm{~d}=5 \\
a_{2} & =-13+5=-8
\end{aligned}
$$

$$
\mathbf{1}
$$

Or
$a+7 d=37$ and $a+11 d=57$
$\Rightarrow \quad 4 d=20 \Rightarrow d=5$
$\therefore \quad a+35=37 \Rightarrow a=2$
$\therefore \quad$ A.P. is $2,7,12, \ldots$.
7.

Class interval	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{f}_{\boldsymbol{i}}$
$0-20$	10	17	170
$20-40$	30	28	840
$40-60$	50	32	1600
$60-80$	70	p	$70 p$
$80-100$	90	19	1710
Total		$96+p$	$4320+70 p$

$$
\begin{aligned}
\bar{x} & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
50 & =\frac{4320+70 p}{96+p} \\
4320+70 p & =50 p+4800 \Rightarrow 20 p=480 \\
p & =24
\end{aligned}
$$

8. Modal class : $35-45$.
$f_{m}=7, f_{m-1}=5, f_{m+1}=4, l=35, h=10$

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{m}-f_{m-1}}{2 f_{m}-f_{m-1}-f_{m+1}}\right) \times h \\
& =35+\left(\frac{7-5}{14-5-4}\right) \times 10 \\
& =35+\frac{2 \times 10}{5}=35+4=39 \\
\text { Mode } & =39
\end{aligned}
$$

9. Angle between tangents $=45^{\circ}$
\therefore Angle between radii at points of contact $=180^{\circ}-45^{\circ}=135^{\circ}$
Correct construction
10. Let AB be the ladder
or

$$
\begin{aligned}
& \frac{h}{15}=\sin 30^{\circ} \\
& h=\frac{15}{2}=7.5 \mathrm{~m} \\
& \boldsymbol{O r}
\end{aligned}
$$

$$
\begin{aligned}
\frac{h}{60} & =\tan 60 \\
h & =60 \cdot \sqrt{3}
\end{aligned}
$$

\therefore The height of the tower is $60 \sqrt{3} \mathrm{~m}$.

$$
\begin{aligned}
r & =63 \mathrm{~m} h=5 \mathrm{~m} \\
\mathrm{H} & =16 \mathrm{~m}
\end{aligned}
$$

Total C SA $\pi r l+2 \pi r h$

$$
\begin{aligned}
l & =\sqrt{r^{2}+\mathrm{H}^{2}}=\sqrt{(63)^{2}+(16)^{2}}=65 \mathrm{~m} \\
& =\pi r(l+2 h) \\
& =\frac{22}{7} \times 63(65+10) \\
& =22 \times 9 \times 75 \mathrm{~m}^{2} \\
\text { Cost of } l \mathrm{~m}^{2} & =₹ 12 \\
& =22 \times 9 \times 75 \mathrm{~m}^{2} \\
& =₹ 12 \times 22 \times 9 \times 75 \\
& =₹ 178200
\end{aligned}
$$

12. We know that

$$
\begin{aligned}
\angle \mathrm{PTQ} & =180^{\circ}-\angle \mathrm{POQ} \\
& =\angle 1+\angle 2 \\
& =2 \angle 1(\therefore \angle 1=\angle 2 \text { as } \mathrm{OP}=\mathrm{OQ}) \\
& =2 \angle \mathrm{OPQ} \\
& \quad \mathrm{Or}
\end{aligned}
$$

13. (a) Let the usual speed of the plane be $x \mathrm{~km} / \mathrm{h}$.

As per given condition,

$$
\begin{array}{rlrl}
& \frac{1500}{x}-\frac{1500}{x+250} & =\frac{1}{2} \\
\Rightarrow & \frac{1500(x+250)-1500 x}{x(x+250)} & =\frac{1}{2} \\
\Rightarrow & & x^{2}+250 x-75000 & =0 \\
\Rightarrow & x^{2}+250 x-75000 & =0 \\
\Rightarrow & x^{2}+1000 x-750 x-75000 & =0 \\
\Rightarrow & (x-750)(x+1000) & =0 \Rightarrow x=750, \text { rejecting } x=-1000 . \\
\text { So, } & \text { modified speed } & =750+250=1000 \mathrm{~km} / \mathrm{h} .
\end{array}
$$

14. (a) $\quad \mathrm{BC}=5-1.3=3.7 \mathrm{~m}$

Let length of ladder CD be $x \mathrm{~m}$.
So,

$$
\sin \theta=\frac{B C}{x}
$$

$$
\begin{equation*}
\Rightarrow \quad x=\frac{3.7}{\sin \theta} \tag{1}
\end{equation*}
$$

Now,
$\cos \theta=0.5 \Rightarrow \theta=60^{\circ}$
So,

$$
x=\frac{3.7 \times 2}{\sqrt{3}}=\frac{7.4 \sqrt{3}}{3} \mathrm{~m}
$$

(b)

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{BC}}=\cot \theta \\
& \frac{\mathrm{BD}}{3.7}=\cot 60^{\circ} \Rightarrow \frac{\mathrm{BD}}{3.7}= \\
& \mathrm{BD}=\frac{3.7}{\sqrt{\sqrt{3}}}=\frac{3.7 \sqrt{3}}{3} \mathrm{~m}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\mathrm{BD}}{3.7}=\cot 60^{\circ} \Rightarrow \frac{\mathrm{BD}}{3.7}=\frac{1}{\sqrt{3}}
$$

Reliable BOOKS

SCAN TO DOWNLOAD OUR APP

Presents

\square

Let's Learn in Digital India More than 5000+ Activities For IX, X \& XII Classes

Conceptual Videos

Mind Maps

Practice Test with Analysis
Most Probable Exam. Questions
Latest CBSE Sample Papers
Latest CBSE Syllabi
Important CBSE Notifications
NCERT Textbooks
Other Support Materials

